

North Carolina Statewide
Technical Architecture

Application Domain

© 2005 State of North Carolina
Office of the State Chief Information Officer

Enterprise Technology Strategies
 PO Box 17209

 Raleigh, North Carolina 27699-7209
 http://www.ncsta.gov

ets@ncmail.net

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in
any form or by any means, electronic or mechanical, including photocopying, recording or by any informational

storage system without written permission from the copyright owner.

http://www.ncsta.gov/
mailto:ets@ncmail.net

North Carolina Statewide Technical Architecture Application Domain

Table of Contents

1. PRINCIPLES .. 4
1.1. BUSINESS DRIVES APPLICATION DESIGN. .. 4
1.2. CONTINUOUS CHANGE IN BUSINESS AND TECHNOLOGY DEFINE A NEED FOR DEVELOPING
ADAPTABLE SOLUTIONS.. 4
1.3. BUILDING A SOLUTION AS A COLLECTION OF REUSABLE, LOOSELY COUPLED COMPONENTS AND
SERVICES PROVIDE DEVELOPMENT EFFICIENCY AND DEPLOYMENT FLEXIBILITY. 5
1.4. AN AGENCY’S ARCHITECTURAL STRATEGY DEFINES THE DIRECTION AND REQUIREMENTS FOR
DEVELOPMENT TOOL AND FRAMEWORK SELECTION. .. 5
1.5. END USERS DETERMINE APPLICATION USABILITY AND FUNCTIONALITY....................................... 5
1.6. THE EASE AND COMPLETENESS OF TESTING IS DESIGNED INTO THE SOLUTION. 6
1.7. PROACTIVE APPLICATION MANAGEMENT IS ESSENTIAL FOR CONTINUOUS SERVICE AVAILABILITY.
 6
1.8. ENTERPRISE SOLUTIONS EXIST IN HETEROGENEOUS ENVIRONMENTS THAT NECESSITATE
INTEROPERABILITY. .. 6
1.9. ENSURE THE CONFIDENTIALITY, INTEGRITY, AND AVAILABILITY OF APPLICATION INFORMATION.7
1.10. UTILIZE WIDELY ADOPTED STANDARDS FOR THE DEVELOPMENT OF APPLICATIONS AND SERVICES.
 7
1.11. ENSURE CRITICAL SYSTEMS MAINTAIN A CLEAR VENDOR DEPENDENCY RISK MITIGATION
STRATEGY. ... 7
1.12. PROVIDING CLEAR SEPARATION BETWEEN FUNCTIONAL LAYERS ENHANCES SOLUTION
FLEXIBILITY AND ADAPTABILITY. ... 8

2. APPLICATION DESIGN .. 8
2.1. PRACTICES ... 8

2.1.1. Develop applications utilizing multi-tiered service-oriented approach. 8
2.1.2. Manage business logic outside of the development team. .. 8
2.1.3. Incorporate the ability to capture and report management information within the
application. ... 9
2.1.4. Develop applications to receive and process administrative commands................................ 9
2.1.5. Utilize a standardized modeling language to align business requirements and application
functionality. ... 10
2.1.6. Publish open, standards-based interfaces for all reusable components and services. 10
2.1.7. Utilize existing and proven architecture, design, and implementation patterns in the design
of enterprise solutions... 10
2.1.8. Design components and services to be process-centric.. 11
2.1.9. Ensure accessibility by designing solutions that are available to the broadest possible range
of users and compatible with a wide range of assistive technologies. .. 11
2.1.10. Limit Web Services development to internal, non-public facing initiatives, while industry
standards mature. ... 11
2.1.11. Document the application design... 12
2.1.12. Design solutions that can be managed within a multi-tiered distributed environment.... 12
2.1.13. Design public facing, web-based solutions to be browser independant. 13

2.2. STANDARDS ... 13
2.2.1. Comply with available application accessibility requirements. ... 13
2.2.2. Develop applications that can be managed by the Simple Network Management Protocol. 14

3. APPLICATION STRUCTURE... 14
3.1. PRACTICES ... 14

3.1.1. Provide clear separation between behavior, content, and presentation of user interfaces. . 14
3.1.2. Implement a discrete data access layer to isolate business logic from the persistence
mechanism. ... 14
3.1.3. Design solutions that can be physically separated across multiple environments. 15
3.1.4. Utilize standard distributed technologies for communication between application tiers. 15

 1 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

3.1.5. Develop applications and services independent of a particular deployment configuration or
environment. ... 15

4. APPLICATION DEVELOPMENT .. 16
4.1. PRACTICES ... 16

4.1.1. Utilize an enterprise framework in the development of applications and services............... 16
4.1.2. Define specific roles for developers.. 16
4.1.3. Adopt and document a common set of coding standards.. 17
4.1.4. Limit, identify, isolate, and document development activities that incur vendor dependencies.
 17
4.1.5. Reuse existing components and services... 17
4.1.6. Create and implement a comprehensive testing strategy as part of the solution’s
development lifecycle. ... 18

5. COMPONENT BASED DEVELOPMENT.. 18
5.1. PRACTICES ... 18

5.1.1. Document and publish information about reusable components.. 18
5.1.2. Provide a well-documented Application Programming Interface (API) for all reusable
components. .. 19
5.1.3. Construct components as reusable, fine-grained, functional application building blocks. .. 19
5.1.4. Design components as discrete elements that function independently of others. 19

6. SERVICE ORIENTED ARCHITECTURE ... 19
6.1. PRACTICES ... 19

6.1.1. Encapsulate business processes into well-defined, self-contained, course-grained services.
 19
6.1.2. Provide interoperable access to published services. .. 20
6.1.3. Access services through standardized, platform-neutral, self-describing, well-structured,
and extensible messages. .. 20
6.1.4. Separate the service interface from its implementation.. 20
6.1.5. Describe services using a standard format... 20
6.1.6. Publicize and discover services using standard service registries. 21
6.1.7. Utilize standard protocols for exchanging messages and data between services................. 21

6.2. STANDARDS ... 21
6.2.1. Promote web services interoperability by conforming to the Web Services Interoperability
(WS-I) Basic Profile. ... 21
6.2.2. Transmit web services messages as Simple Object Access Protocol (SOAP) compliant
structures. ... 22
6.2.3. Use the Web Services Description Language (WSDL) for describing available services. ... 22
6.2.4. Utilize the Universal, Description, Discovery and Integration (UDDI) standard for
publication and discovery of web services.. 22
6.2.5. Conform to the eXtensible Markup Language (XML) specification in the development of web
service messages. .. 22
6.2.6. Use the XML Schema specification for defining the structure, content, and semantics of
XML-based messages.. 23
6.2.7. Invoke services over Hypertext Transfer Protocol (HTTP) .. 23

7. APPLICATION SECURITY... 23
7.1. PRACTICES ... 23

7.1.1. Ensure application security at all layers within a solution... 23
7.1.2. Leverage industry standard secure coding practices in the development of applications and
services. 23
7.1.3. Limit risk by exposing only necessary, well-documented service interfaces. 24

8. PURCHASED AND LICENSED SOFTWARE... 24
8.1. PRACTICES ... 24

8.1.1. Limit and isolate customizations to purchased or licensed software.................................... 24

 2 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

8.1.2. Purchase, transfer, or license business systems that provide clear separation between the
presentation logic, business logic, and data access.. 25

 3 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

1. Principles

1.1. Business drives application design.
Rationale:

• Information Technology (IT) exists to support the business through increasing
efficiencies and maximizing economies. Avoid technology for technology sake.

• Make IT decisions, including application design and development, based on the needs
of the business.

• Completely understand the business process by requiring each business event
(triggers that activate business processes) to be identified and the work unit servicing
each business event to be identified.

• Understand how work units cooperate to supply value when business events occur.
• Analyze existing processes to ensure alignment of the processes to the business goal.
• Draw logical boundaries around each process within the application.
• Implement each process with a collection of related business rules.

1.2. Continuous change in business and technology define a
need for developing adaptable solutions.

Rationale:

• Solutions need to evolve over time to support new and changing business
requirements.

• Adaptation may take different forms (modification of the structure, contents, or
location of programs and data), and may be static or dynamic. Developing systems
that can adapt to future needs will extend the life of applications.

• Adaptability of a system is reliant on a number of attributes or “ilities”
• Extensibility - Staying flexible for future application expansion.
• Scalability – Providing growth through the use of additional resources rather than

extensive modification of the application itself.
• Availability – Providing application readiness to handle customer requests and

return timely and accurate responses.
• Reliability – Providing resiliency and fault-tolerance of the application ensuring

uptime and job completion.
• Interoperability – The ability to exchange data between different applications

utilizing differing technologies.
• Accessibility – Ensuring open access of application functionality for persons with

disabilities.
• Manageability - Monitoring, tuning, and upgrading applications independently.
• Usability – Providing an expected user experience and acceptance.
• Mobility – Ensuring location transparency of the application or parts of the

application.

 4 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

1.3. Building a solution as a collection of reusable, loosely
coupled components and services provide development
efficiency and deployment flexibility.

Rationale:

• Applications designed with reusable components can be developed very rapidly, incur
fewer costs, and reduce the risks accociated with new projects since the quality of the
reusable component has already been validated.

• Details such as location of components, databases, and servers on which the
components run are completely independent from the business process flows and
definitions. Therefore this style of architecture is inherently adaptable, extensible,
flexible, and scalable.

• Allow for the possibility of re-partitioning a deployed application in the future.
• Tightly coupled components become problematic when they limit the capability of

the application, such as in development, testing, and deployment of the application.
For example, a loosely coupled application provides flexibility in physical
implementation (i.e., in the deployment of application components within a
production environment).

1.4. An agency’s architectural strategy defines the direction
and requirements for development tool and framework
selection.

Rationale:

• Do not rely on a single application tool to satisfy all development and application
requirements.

• Most tools are oriented toward a specific area of development.
• Compile a suite of development tools with the ability to solve a variety of problems.
• Historically, the development tool selected directed project teams toward a specific

architecture, which was supported by the tool. That led to the problem of the tools
driving the architecture (and thus the business) rather than the business driving the
architecture, which provides the requirements for the tools used.

• Select toolsets that align with the concepts provided within the architecture and do
not limit the development team.

• Tools are now available for end-to-end design, development, and deployment of
applications. Avoid a reliance on proprietary extensions and the default architectural
guidance of these tools, which increase the likelyhood of vendor lock-in.

1.5. End users determine application usability and
functionality.

Rationale:

• Design applications with the end user experience in mind.
• User experience includes the visual appearance, interactive behavior, and assistive

capabilities of a software application.
• A focus on user experience is required from the beginning of the design process.
• Develop the user experience to be:

 5 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Comfortable - familiar, friendly, and easy to use.
• Intuitive - very clear in explaining services and offerings. It should be clear how

to find what is being looked for from a user’s perspective.
• Consistent - maintain a set of standards and group similar items together.

1.6. The ease and completeness of testing is designed into the
solution.

Rationale:

• Testing is a critical step in the development cycle.
• Trace test cases to documented, measurable, functional requirements.
• Design applications, components, and services to be easily tested and debugged.
• In addition to testing for potential bugs or defects, testing performance, fault-

tolerance, and security are important elements of a test plan.
• Application components with consistent interfaces are easier to test on an application-

wide basis.
• Error handling, tracing, and check pointing should be included, and implemented in

the earliest phases of development.
• Incorporate testing into the earliest phases of the development process.

1.7. Proactive application management is essential for
continuous service availability.

Rationale:

• Application management is a proactive, rather than reactive, process.
• Proactive application management better supports the business. With proactive

management, applications report potential problem conditions at predefined
thresholds before errors occur. This gives system administrators the opportunity to
take corrective action to prevent an application from failing.

• While a solution can effectively rely on administrators to respond to errors in a
reactive manner, proactive application management can be automatically undertaken
using appropriate processes and management tools.

• Use thresholds to provide early alert to possible error conditions. For example, rather
than having the database engine initiate an alarm when an application fails because its
database table is full, a self-aware application alerts an operator when database
growth meets some predefined threshold of maximum table size. This would allow
system administrators to take corrective action in order to prevent a business-
impacting outage.

1.8. Enterprise solutions exist in heterogeneous environments
that necessitate interoperability.

Rationale:

• Interoperability is the ability of software located on different hardware, potentially
from different vendors, to share data.

 6 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• While designing interoperable solutions is potentially more complex than designing
for portability, the need for applications and services to be able to communicate with
other services within a heterogeneous environment has increased.

• Component portability allows code to work on multiple platforms, but it requires that
all software be written in the same language or limited number of languages.
Interoperability, on the other hand, allows applications or services the ability to use or
access other applications or services regardless of the language they are coded in or
the platform they are deployed upon.

1.9. Ensure the confidentiality, integrity, and availability of
application information.

Rationale:

• Security is an ever-growing concern, which is fundamentally about protecting the
state’s assets.

• Assets may be tangible items, such as documents or citizen information, or it may be
less tangible, such as the reputation of the agency or state to provide needed services.

• Ensure that applications are developed in a secure manner by adhering to strict coding
practices.

1.10. Utilize widely adopted standards for the development of
applications and services.

Rationale:

• Standards reduce the complexity of application development by creating a
homogeneous set of core, enabling, and transferable specifications.

• The use of standards provides improved product and process interoperability, and
reduced cost of developing adaptable applications and services.

• Standards help ensure uniform, consistent, high-quality solutions.

1.11. Ensure critical systems maintain a clear vendor
dependency risk mitigation strategy.

Rationale:

• Development projects that incorporate specific product technologies risk becoming
dependent upon the vendor’s implementation of that technology. When upgrades or
software changes occur, interoperability problems may follow.

• Development teams must identify and plan for changes to vendor specific
technologies.

• Complete dependence on a specific vendor’s technology leads to a loss of control
toward the technology, for the agency.

• Dependence on a specific vendor technology increases the responsibility of the
developers. Developers must maintain an in-depth knowledge of the vendor’s
products and planned future product changes.

• Dependence can increase the costs of adapting solutions to changes in business needs,
particularly if these business needs are inconsistent with the technology direction of
the vendor.

 7 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

1.12. Providing clear separation between functional layers
enhances solution flexibility and adaptability.

Rationale:

• Splitting solutions along functional boundaries is consistent with the “separation-of-
concerns” concept, which states that software should be decomposed in such a way
that different aspects of the problem are addressed in well-separated modules or parts
of the software system.

• Applications fundamentally consist of a minimum of three distinct layers, which
include presentation, business rules, and data access.

• The separation of functional layers allows for the ability to adapt to changes.
• Functional separation provides a more scalable solution. As the transaction load,

response time, or throughput requirements change, modules can be moved to other,
more powerful systems or distributed over multiple platforms, without negatively
impacting the service.

2. Application Design

2.1. Practices

2.1.1. Develop applications utilizing multi-tiered service-oriented
approach.

Rationale:

• Mitigate the limitations and potencial reuse of monolithic and client/server design
approaches by developing applications utilizing a multi-tiered destributed service-
oriented approach.

• Multi-tiered destributed service-oriented applications are characterized by a
functional decomposition of the application logic into process-centric services.

• Improved scalability, availability, manageability, and resource utilization can be
achieved over other approaches.

• Applications created with this approach incure a lower total cost of ownership (TCO)
because much of the application is built utilizing shared components and services.
Additionally the ability of the application to adapt to changing business needs over
time ensures longevity of the applications useful life.

• The maximum benefits of a service-oriented approach are realized when many
applications are deployed across the state, sharing common software services and
offering multiple user interfaces.

• To maximize sharing, reuse, and interoperability of common business processes
across organizational boundaries, development teams should actively migrate their
application design practices and tools to realize the benefits of modularized multi-tier
designs and service-oriented computing.

2.1.2. Manage business logic outside of the development team.
Rationale:

• Manage an application’s business needs/requirements outside of the development
staff.

 8 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Assign responsibility for defining and maintaining the integrity of an application’s
business rules to business units.

• The development staff is responsible for coding and administering the software that
implements business rules, while business subject matter experts (SME) manage the
process requirements.

• Business units are responsible for the definition and integrity of business rules, and
for communicating changes in business rules to the development team.

2.1.3. Incorporate the ability to capture and report management
information within the application.

Rationale:

• Provide the ability to report status, performance statistics, errors, and other system
conditions. Decide at design time which status events the application should report to
users by function:
• End Users (e.g., erroneous input)
• Application managers (e.g., database growth within of maximum growth

constraints.)
• Network administrators (e.g., bandwidth utilization)

• Operations staff must be provided procedures for dealing with all conditions that are
detected and reported. For example, if an application reports it can no longer access
its database, operations staff must have instructions for handling the situation. These
instructions should be documented in the agency Business Continuity Plan.

• At design time, decide the specific reporting requirements of an application module.
Different applications may have different management needs, depending on their
respective impact on the business the applications support.

• Applications are responsible for reporting conditions. Interpreting the reports and
deciding on the appropriate response are performed external to the application, by
management staff and/or automated within the management framework.

• Include run-time tracing to assist trouble shooting operational problems. Tracing
should be able to be turned on and off by administrators.

• If no management environment exists, applications should still report status to local
log files that can be monitored by administrators. Applications should still be able to
read and respond to commands from administrators.

2.1.4. Develop applications to receive and process administrative
commands.

Rationale:

• Decide at design time what control management tools exercise over the application
components and services.

• Design applications to read and respond to commands from system administrators.
Commands may include, but are not limited to, shut down and restart, reconfigure,
and activation of audit logging/tracing.

• Make application configurations parameter-driven, so applications can be
reconfigured without recompiling and redistributing code.

 9 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

2.1.5. Utilize a standardized modeling language to align business
requirements and application functionality.

Rationale:

• Utilize a modeling language to define “what” solutions and services are being
developed in addition to “how” the development should be done.

• Identify business requirements and what processes the solution will contain to address
the requirements.

• Solution modeling enables identification of opportunities for efficiency.
• Utilize a common, standardized modeling language such as the Unified Modeling

Language (UML).
• Maintain consistent application models through the use of configuration management

principles and best practices.
• Utilize a common and consistent modeling tool or language within the agency.

2.1.6. Publish open, standards-based interfaces for all reusable
components and services.

Rationale:

• As the State continues to develop and publish reusable (shareable) application
components and more course-grained, distinct business processes or services, the
interfaces to both should be based on an industry-defined set of open standards. This
provides the greatest industry-wide support, limits the potential for vendor lock-in,
and reduces development complexity.

• Reuse is a key goal of component-based development and service-oriented
architectures. Ease of reuse is the result of developing and designing open interfaces
based on industry standards.

• Do not assume that application components are accessed via a specific application or
user interface.

2.1.7. Utilize existing and proven architecture, design, and
implementation patterns in the design of enterprise solutions.

Rationale:

• Patterns are logical design models of reusable ideas focused on abstract concepts such
as extensibility, maintainability, scalability, reliability, and productivity.

• Many patterns are based on earlier designs that worked in practice and have gained
industry support. Some have matured with widespread acceptance and are considered
de facto standards in the industry such as the Model – View – Control (MVC) pattern,
which can be used to separate business functionality from the presentation.

• Patterns provide roles, interactions, and relationships between application
components and provide a solid foundation for building reusable components and
services.

• Many development and modeling tools now provide support for patterns, enabling
analysts or developers to apply patterns to designs. Note: While tools may support or
push specific patterns, design decisions should be based on functional requirements of
the solution and not the tool(s) used to develop the solution.

 10 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Patterns should not replace developer knowledge; instead patterns should only be
used as an aid to ease the development of common tasks and functionality.

2.1.8. Design components and services to be process-centric.
Rationale:

• Historically, application logic was developed as a set of program-centric components,
which tended to be tightly coupled to the internal workings of a specific application
or architecture. Process-centric components create a clear reference to the underlying
business processes and sub-processes.

• The key goal of a process-centric environment is to define and clearly record the
business processes (or services). This approach ensures that changes to business
operational procedures can be added and assembled quickly by utilizing existing
process flows.

2.1.9. Ensure accessibility by designing solutions that are available to the
broadest possible range of users and compatible with a wide range
of assistive technologies.

Rationale:

• As part of its goal to provide governmental services, the State must ensure that
systems are accessible to persons with disabilities.

• Solution developers achieve accessibility by building applications that exhibit:
• Device-independent design.
• Universal design rather than custom views.
• Equally usable for all.
• Logical, portable, and clearly structured.

• Benefits of Accessible Designs include:
• More usable application.
• Easier and more cost effective to migrate or upgrade to take advantage of new

technologies.
• Consistent appearance and functionality across diverse computer configurations.
• Access by all users regardless of rendering device used.

2.1.10. Limit Web Services development to internal, non-public facing
initiatives, while industry standards mature.

Rationale:

• While many of the standards used in the development of Web Services are beginning
to stabilize (e.g. WSDL and SOAP), critical pieces for manageability, security,
reliable messaging, notification, and transactions are still relatively immature and
volatile.

• New Web Service standards are being created, old standards are evolving, and
vendors are integrating proposed standards into their products. This is creating a
highly volatile environment for the development of secure, reliable Web Services.

• Disagreements among the participants within the standards bodies have also
generated concerns about the direction of proposed specifications in areas such as
orchestration, reliability, security, and transactions.

 11 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Limit the use of XML-based Web Services to publishing services that are available to
applications and other services statewide and within specific agencies such as for
application separation, intra-agency integration, and inter-agency integration. Utilize
current, mature distribution and integration technologies (application to application
and messaging) for scenarios not listed here such as citizen to government or state to
federal government applications.

• At this time Web Services are not recommended for use in interfacing with external
government agencies (federal, local, etc.), partners, or providing services directly to
the citizens based on the current state of standards. For these cases the use of current
more mature technologies are favored.

2.1.11. Document the application design.
Rationale:

• The usefulness of an agency’s application design is lost if not captured and
documented.

• A documented design can be used as a training tool for new employees or consulting
staff that is utilized for development and maintenance of applications based on the
architecture.

• A properly documented design provides a common foundation for development teams
to reduce errors and increase productivity.

• Application design supports business processes, and maintains the ability to change
when business processes change. Changes occur more frequently in business
processes than in the data required to support the business. Many of the cornerstones
of application architecture and application development rely on the proper
documentation of the agency’s architecture and application design.

2.1.12. Design solutions that can be managed within a multi-tiered
distributed environment.

Rationale:

• Develop applications and the components or services that interact with the application
so they can be managed using the enterprise's system management tools.

• Manage the application as a whole by managing every component of the application
as well as any component dependencies. Enable every component of the application
to facilitate its own management.

• Application dependencies include infrastructure (e.g., middleware, databases, and
networks), other applications, and shared software components. Application teams
must identify and document these dependencies before an application is deployed.

• Typical management functions include:
• Software distribution.
• Start-up, shutdown, and restart of components and/or services.
• Initialization of multiple instances of component (s).
• Application Configuration.
• Operations logging.
• Notification of errors, exceptions, and unexpected events.
• Security.

 12 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Installation, removal, and update of application modules.
• Version control.

2.1.13. Design public facing, web-based solutions to be browser
independent.

Rationale:

• Web solutions that target the public audience should refrain from utilizing browser
specific features in the development of web-based UIs. Doing so limits the audience,
reduces flexibility, and leads to vendor / platform dependancies.

• Construct web-based UIs with currently available standards (CSS, HTML4, and
XHTML) to maximize cross-browser alignment.

• Solutions developed for a specific browser will inccur substantial switching costs
(redevelopment of feature functions) if support for other browsers is needed in the
future.

2.2. Standards

2.2.1. Comply with available application accessibility requirements.
Rationale:

• While each agency should adopt a level of accessibility that is consistent with the
overall goals of the agency. As a foundation and in the absence of an agency
accessibility level, all applications, web-based or standalone, are required to meet the
minimum accessibility level.

• For web-based development:
• The World Wide Web Consortium (W3C), an international standards body for

such protocols as HTML, XML, and CSS, maintains the Web Content
Accessibility Guideline. The accessibility guideline mirror Federal and
International requirements for accessibility. The URL for the document can be
found at http://www.w3.org.

• “Minimum” for web-based applications is defined as full compliance of the
World Wide Web Consortium’s Web Content Accessibility’s “basic” accessibility
requirements (Priority 1 in version 1.0 or Level 1 in version 2.0).

• Federally funded projects may need to comply with other standards such as the
Federal Section 508 (http://www.section508.gov/).

• For standalone application development:
• “Minimum” for standalone applications is defined as full compliance of the

Federal Section 508, Subpart B, Software Applications and Operating Systems
section (1194.21) (http://www.section508.gov/).

• While these standards present the minimally acceptable accessibility requirements,
software developers are strongly encouraged to maximize the accessibility of their
applications for universal access.

• Additional information can be found at the U.S. Access Board - The Access Board is
an independent Federal agency devoted to accessibility for people with disabilities.
http://www.access-board.gov/

 13 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

2.2.2. Develop applications that can be managed by the Simple Network
Management Protocol.

Rationale:

• The Simple Network Management Protocol (SNMP) is an application layer protocol
that facilitates the exchange of management information between network devices.

• SNMP enables network administrators to manage network performance, find and
solve network problems, and manage applications and services that are deployed on
the network.

• The Internet Engineering Steering Group (IESG) maintains the SNMP specification
(http://www.ietf.org/iesg.html).

3. Application Structure

3.1. Practices

3.1.1. Provide clear separation between behavior, content, and
presentation of user interfaces.

Rationale:

• Provide user interface content without making assumptions about how it will be used.
• Accessible systems allow the client to process content in the form that best suits the

client and user's capabilities.
• User Interface (UI) technologies continue to expand (interactive touch-screens,

handwriting, voice recognition, and speech synthesis) with each technology utilizing
a unique language such as WML, SpeechML, JSML, VoxML, HTML and XML.

• Reminder: Users of a system are trying to access information, not presentation.

3.1.2. Implement a discrete data access layer to isolate business logic
from the persistence mechanism.

Rationale:

• Encapsulate in a data access layer the logic used to access data, such as querying or
updating application data and logically separate it from the business layer.

• Initiate calls to the data access layer from within the business rules and not directly
from the user interface or directly from other applications.

• Agencies are the custodians of the State’s data, and are responsible for maintaining
the integrity of the data. By developing applications that allow only business rules to
access data, the agency can maintain better control over data integrity.

• Data is created and used by business processes. In computer applications, data is
created, used, and managed by the application component that automates the business
process.

• Accessing data in any way other than by business processes bypass the rules of the
module that controls the data. Data cannot be managed consistently if multiple
processes or users access it directly.

 14 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

3.1.3. Design solutions that can be physically separated across multiple
environments.

Rationale:

• Physical tiers are divisions between the modules of your application, which may not
map directly to the logical separation used to abstract the different kinds of
functionality within the application.

• Physical separation does not necessarily equate to separate boxes or machines.
Modules could be separated across virtual machines or within virtual partitions.

• The physical tiers may need to be separated by firewalls or other security boundaries
in order to implement a layered security model.

• Physically distributing components over several tiers increases obstacles that
potential attackers must circumvent in order to compromise the system.

• Distributing components across multiple physical tiers can improve an application’s
ability to provide continued scalability, availability, and manageability.

• Design physical separation into the solution early in the development lifecycle.
Changes that need to be implemented after-the-fact incur unnecessary cost and time
overruns.

3.1.4. Utilize standard distributed technologies for communication
between application tiers.

Rationale:

• Standards-based communication is the goal (e.g., Web Services, XML messaging,
ODBC, JDBC…), however the use of an industry accepted standards as it relates to a
particular framework or environment is currently acceptable for non-service
development (e.g., .Net Remoting, RMI, ADO.Net…).

• Do not develop or utilize a custom developed communication technology.
• Standards-based communication technologies do not always equate to a vendor-

independent implementation. For example, the use of CORBA is not a guarantee of
interoperability based on a specific vendor's implementation of the published
specification. Development teams must be aware of this and mitigate the reliance on
vendor specific implementations of published standards.

• XML-based Web services are an attractive alternative to communication between
services. Additionally, XML-based Web Services are appropriate for use in
integrating applications and services within the agency and between agencies. XML-
based Web services are built on the common infrastructure of the HTTP protocol,
XML, and SOAP. These are public, open-standards with wide industry support.

• Web services provide considerably more flexibility and interoperability for
implementing solutions within a heterogeneous environment. However, due to their
maturity level, the volatility of standards around this technology increases risk.

3.1.5. Develop applications and services independent of a particular
deployment configuration or environment.

Rationale:

• Engage in logical application design separate from physical design.

 15 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Do not focus on where application components will execute (i.e., where they will be
deployed) or what specific production environment they will be executed within.

• Environments change over time and solutions will need to be reconfigured or
redeployed based on the needs of the business.

• System designers and operations support staff make deployment decisions.
• Avoid building solutions that are unable to be deployed within a platform-neutral

environment or contain hard-coded interfaces that are difficult to change.

4. Application Development

4.1. Practices

4.1.1. Utilize an enterprise framework in the development of applications
and services.

Rationale:

• Utilize an enterprise framework that provides platforms, tools, and programming
environments for developing multi-tiered distributed applications such as Java 2
Enterprise Edition (J2EE) and the .Net framework.

• Application frameworks provide an efficient, distinct, reusable, and unified software
infrastructure that reduces the number of enterprise software products to support,
maintain, and integrate.

• Application frameworks include such capabilities as presentation services, server-side
processing, session management, business logic framework, application data caching,
application logic, persistence, transactions, security, and logging services for
applications.

• Application development tools and application servers are built on top of application
frameworks.

• Leading frameworks are now providing support for the creation of Web services.
• Caution should be taken to implement applications with enterprise frameworks in a

manner that avoids vendor lock-in.
• Standardization of an agency-wide enterprise framework encourages uniformity

among development teams.

4.1.2. Define specific roles for developers.
Rationale:

• Separate development responsibilities along application boundaries.
• An application that has been properly separated provides developers an opportunity to

specialize in the technologies and programming practices that support each layer.
• Developers with different specialties focus on areas of the application that best suit

their skill sets.
• Separation of development staff might include:

• User interface programmers.
• Business rule programmers.
• Data access programmers.
• Application testers.

 16 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Defining separate roles for developers based on the application boundaries limits the
need for highly experienced generalists, which have mastered all aspects of
application development. Less experienced developers can be used for focused
development efforts.

4.1.3. Adopt and document a common set of coding standards.
Rationale:

• Document a set of common coding standards as part of the agency’s architecture.
• The existence of a common set of coding standards easies the process of debugging

and maintaining applications. They should address, but not be limited to:
• Naming conventions for variables, constants, data types, procedures, and

functions.
• Code flow and indentation.
• Error and exception detection and handling.
• Source code organization, including the use of libraries and include files.
• Source code documentation and comments.
• Even the earliest code developed in a project should adhere to the standards.

4.1.4. Limit, identify, isolate, and document development activities that
incur vendor dependencies.

Rationale:

• Identify and design a layer of abstraction to the underlying infrastructure or product-
dependent software interfaces when possible.

• This isolation layer assures applications and services maintain interoperability and
consistency for future technology changes and limits vendor lock-in.

• Isolating the dependencies limits the risks and costs associated with migrating to
other technologies.

• Isolating the dependencies avoids obsolescence due to changes made by the vendor.
• Isolating the dependencies reduce the risks and costs of software upgrades.

4.1.5. Reuse existing components and services.
Rationale:

• Components are fine-grained encapsulated functionality to support common
development efforts; while services are course-grained, process-centric, business
functions utilized to carryout a specific task.

• Build applications by assembling and integrating existing components and services,
rather than by creating or recreating common functionality.

• Components and services can exist internal to a group or agency or across agency
boundaries.

• The objective of functional reuse is to decrease costs and time of developing systems.
• Reusable components increase the productivity of the application development

departments within the enterprise.
• The use of proven components enhances the accuracy of information processing.

 17 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• As the State begins to move towards adoption of a services-oriented architecture
(SOA) approach, development teams will be able to take advantage of component
reuse within the application and the services provided by other applications.

4.1.6. Create and implement a comprehensive testing strategy as part of
the solution’s development lifecycle.

Rationale:

• Software testing is a vital part of the development lifecycle.
• A testing strategy includes both white box and black box testing methods.

• White Box - testing the internal structure of a program.
• Black Box – testing how well a program meets its requirements, looking for

missing or incorrect functionality.
• Testing plans contain, but are not limited to the following testing levels:

• Unit Testing - testing specific functionality in isolation from the rest of the
system.

• Integration Testing - testing the interfaces between functional components or
modules.

• Function Testing – testing the required functions against specifications.
• System Testing – testing system as a whole on platform similar to production.
• Acceptance Testing - testing the completed solution by a small group of end

users.
• Regression Testing – re-testing solution after updates or changes have occurred.
• Load testing – testing simulated real-life workload conditions for the application

under test.
• Latency Testing – testing the time taken by the client and the server to complete

the execution of a request.
• Scalability Testing – testing the capability to increase service capacity.

• No amount of testing can guarantee the application is free from defects, but a
properly tested application can minimize the risk of functional failure.

5. Component Based Development

5.1. Practices

5.1.1. Document and publish information about reusable components.
Rationale:

• The reuse of the available components relies on their proper documentation.
• Maintain information about the available collection of reusable components.
• Changes will occur in the design, functionality, and interface of components over

time.
• The usefulness and reuse of common functionality is lost if not captured and

documented.
• Components that are not published and properly documented will potentially be

rebuilt from scratch for each future development effort.

 18 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

5.1.2. Provide a well-documented Application Programming Interface
(API) for all reusable components.

Rationale:

• A published API is how components and applications will access and communicate
with the encapsulated functionality.

• Documentation for the API should include input and output parameters, which
parameters are required, which parameters are optional, and the lengths and types of
the parameters.

• Once published, dependencies on the component should be assumed. Any changes to
the underlying functionality must align with the expected usage.

5.1.3. Construct components as reusable, fine-grained, functional
application building blocks.

Rationale:

• Highly granular components promote the goal of reusability for generic functionality
within a component-based development strategy.

• Components alone do not solve business problems or automatically map themselves
to business processes and transactions. They are generic “building blocks” that can be
utilized to standardize application functionality.

5.1.4. Design components as discrete elements that function
independently of others.

Rationale:

• Design components to function as a “black box” process.
• Provide the ability for reusable components to be replaced, causing minimal impact to

the whole system by maintaining the same API.
• Design components to allow individual testing.
• Dependencies developed into component structures contain a risk of producing

unintended results when new component changes are implemented.
• Generic components provide greater opportunity for reuse.

6. Service Oriented Architecture

6.1. Practices

6.1.1. Encapsulate business processes into well-defined, self-contained,
course-grained services.

Rationale:

• Business processes are activities conducted in order to meet the goals of the agency.
• Implement services by grouping objects, components, and other finer-grained

services together and expose their functionality through a course-grained facade or
service interface.

• Express services in business terms and encapsulate the business functional flows that
exist between organizational units, lines of business, or the state.

 19 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Provide services, which can be dynamically invoked.

6.1.2. Provide interoperable access to published services.
Rationale:

• The greatest opportunity for reuse and collaboration comes from services that can be
deployed within a heterogeneous environment, and interoperate with other services
regardless of their implementation.

• The state currently maintains a large number of applications and services that have
been developed over time using a variety of technologies. In order to meet changing
business requirements, new services must be able to use and interact with existing and
future state assets.

• Standards exist for developing interoperable services such as the Web Services
Interoperability (WS-I) profile, which consists of a set of non-proprietary Web
services specifications. (http://www.ws-i.org/)

6.1.3. Access services through standardized, platform-neutral, self-
describing, well-structured, and extensible messages.

Rationale:

• Interactions between services are achieved through an exchange of messages.
Develop messages utilizing a common vocabulary, which defines the structure of
those messages. A standards-based technology, such as eXtensible Markup Language
(XML), should be used in the development of these message structures.

• Services utilizing standard messages ensure that the service will interoperate with
other applications and services.

• Some vendors support a set of proprietary extensions used to enhance the
functionality of XML. Vendor specific extensions create dependencies and lead to
vendor lock-in.

6.1.4. Separate the service interface from its implementation.
Rationale:

• Maintain a layer of abstraction between the service implementation and its interface
to ensure that a modification to the service does not impact the applications that rely
on it.

• Access services through a service facade or interface, which acts as a liaison between
entities.

• The service interface must provide the ability to utilize the service without
considering its internal design and content (“black box”).

• Service, as opposed to component functionality, is designed to be coarse-grained.
• Provide service interface documentation, which includes the business operations they

perform as well as the required input parameters, possible errors or exceptions, and
results.

6.1.5. Describe services using a standard format.
Rationale:

 20 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Provide descriptions for published services that describe what information is needed
to utilize the service, how the service can be invoked, and where the service is
located.

• Providing this information in standardized formats eases the integration and
interoperability of the service with clients and development tools.

• Business experts who do not necessarily possess in-depth technical skills should
easily understand the intent of the service through its description.

• The Web Services Description Language (WSDL) is a supported industry standard
for describing the interfaces and services of applications over the web.

6.1.6. Publicize and discover services using standard service registries.
Rationale:

• Centralize service offerings, publish descriptions of services, and manage services
within a repository.

• Assign a resource to each registry, which is responsible for maintaining the service.
• Because other applications and services will become dependant on the available

services, provide a high level of availability and dependability for the registry.
• The registry provides:

• Efficient access to available service interfaces.
• Preserve the integrity of published service interfaces.
• Encourage the discovery and reuse of common services

• Utilize a standard registry model such as Universal Description, Discovery, and
Integration (UDDI).

6.1.7. Utilize standard protocols for exchanging messages and data
between services.

Rationale:

• Historically, vendor specific protocols were used to communicate with application
logic, which was commonly deployed behind firewalls. In order to provide access to
the application logic, firewall exceptions were needed. In a large enterprise these
firewall exceptions could be extensive based on the number of different technologies
that were used. By utilizing a standard protocol, the need for “open” firewall ports are
limited to a manageable set.

• A growing number of services are being developed, which are accessible over
technologies such as the Hyper Text Transfer Protocol (HTTP) and Simple Object
Access Protocol (SOAP), by encoding and wrapping the data captured as eXtensible
Markup Language (XML) messages. This provides adaptable systems that can
interact with a broader range of available services.

6.2. Standards

6.2.1. Promote web services interoperability by conforming to the Web
Services Interoperability (WS-I) Basic Profile.

Rationale:

 21 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• The Basic Profile consists of implementation guidelines recommending how a set of
core Web services specifications should be used together to develop interoperable
Web services.

• The Basic Profile is not a single standard. The The Basic Profile provides companion
guidelines, conventions, and best practices to promote interoperable implementations.

• The Web Services Interoperability (WS-I) maintains the The Basic Profile
(http://www.ws-i.org/).

6.2.2. Transmit web services messages as Simple Object Access Protocol
(SOAP) compliant structures.

Rationale:

• The Simple Object Access Protocol (SOAP) is an XML-based protocol, which can be
utilized for exchanging structured and typed information between applications in a
decentralized, distributed environment.

• SOAP has the ability to be bound to HTTP or SMTP.
• The World Wide Web Consortium (W3C) maintains the SOAP specification

(http://www.w3.org/2000/xp/Group/).

6.2.3. Use the Web Services Description Language (WSDL) for describing
available services.

Rationale:

• Web Services Description Language (WSDL) is an interface description language for
describing the interfaces and services of Web applications at any endpoint.

• WSDL allows Web services applications to publish and discover the services,
interfaces, methods, protocols, and procedures for communicating between endpoints.

• Theoretically WSDL can bind to any protocol or message, although the WSDL
specification only specifies SOAP, HTTP GET/POST, and MIME.

• The World Wide Web Consortium (W3C) maintains the WSDL specification
(http://www.w3.org/TR/wsdl).

6.2.4. Utilize the Universal, Description, Discovery and Integration (UDDI)
standard for publication and discovery of web services.

Rationale:

• The Universal Description, Discovery, and Integration (UDDI) specification defines
standards to classify services according to published attributes.

• Relationships between services and attribute types can be defined, and services can be
discovered through attribute value queries.

• The Organization for the Advancement of Structured Information Standards (OASIS)
has ratified the UDDI specification (http://www.uddi.org/).

6.2.5. Conform to the eXtensible Markup Language (XML) specification in
the development of web service messages.

Rationale:

• The eXtensible Markup Language (XML) is a simple, very flexible, descriptive
language for writing structured data, which can be used to store or transport data.

 22 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• XML can be used with network protocols like HTTP.
• The World Wide Web Consortium (W3C) maintains the XML specification

(http://www.w3.org/XML/).

6.2.6. Use the XML Schema specification for defining the structure,
content, and semantics of XML-based messages.

Rationale:

• Historically XML metadata was described using Document Type Definitions (DTD),
which evolved into a de facto industry standard prior to 1999.

• In 1999 the World Wide Web Consortium (W3C), which was maintaining the
standard, halted further development of DTD standards.

• On May 3, 2001 the W3C published the XML Schema specification, which is the
preferred metadata definition language (http://www.w3.org/XML/Schema).

• The World Wide Web Consortium (W3C) maintains the XML Schema specification.

6.2.7. Invoke services over Hypertext Transfer Protocol (HTTP)
Rationale:

• The Hypertext Transfer Protocol (HTTP) is an application-level protocol for
distributed, collaborative, hypermedia information systems.

• HTTP is a generic, stateless protocol.
• HTTP runs on top of TCP (Transmission Control Protocol), which is a stream

protocol on top of IP (Internet Protocol).
• The Internet Engineering Task Force (IETF) maintains the HTTP specification

(http://www.ietf.org).

7. Application Security

7.1. Practices

7.1.1. Ensure application security at all layers within a solution.
Rationale:

• A benefit of properly separating functional units within an application is the ability to
implement a broader security model that focuses on vulnerabilities at each layer.

• Secure application environments by:
• Providing perimeter security, which includes firewalls, intrusion-detection

systems and anti-virus filters. These technologies are use to keep malicious traffic
off the network.

• Integrating security between the perimeter and the application. Additionally,
security must be utilized between each layer of the application.

• A layered security model limits the amount of data and logic that is available at each
layer if a system is compromised.

7.1.2. Leverage industry standard secure coding practices in the
development of applications and services.

Rationale:

 23 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Development teams should actively apply a secure coding methodology that aligns
with their agency’s architecture, which provides development teams direction for
addressing security issues. Examples include:
• Security infrastructures provide firewalls, intrusion detection systems,

authentication services, and other methods of securing application environments.
A secure coding methodology helps ensure the security of an application or
service regardless of the underlying infrastructure.

• Compromised systems or transaction exceptions should not reveal information
about sensitive data or executions. Code to reveal the absolute minimum
necessary to the service requestor, while capturing the appropriate security
information to a secure log.

• Develop applications assuming the absolute minimum set of privileges needed for
execution by a user or other application.

• Never depend on obscurity for security. Attackers with malicious intent have
steadily increased their knowledge of existing security technologies and common
vulnerabilities. Identify all sensitive data and managed appropriately such as
ensuring passwords are encrypted both inside application executables and across
the transport layer.

• All input arriving from a source external to the application’s current trusted
environment is assumed to be malicious, until proven otherwise. Input should be
validated prior to engaging in a business process.

7.1.3. Limit risk by exposing only necessary, well-documented service
interfaces.

Rationale:

• Limit access to encapsulated application logic to only the components necessary to
complete a business process.

• Develop complete documentation, which defines the appropriate use of available
services.

• Limiting the number of entry points into the service reduces the attack surface
exposed.

8. Purchased and Licensed Software

8.1. Practices

8.1.1. Limit and isolate customizations to purchased or licensed
software.

Rationale:

• Purchased software applications have the potential to represent a significant challenge
in the management and implementation of application, network, security, and
platform architectures.

• Isolating customizations from the purchased software, improves the ability to upgrade
and move to new releases as required over time. As new releases or patches to the
purchased software occur, the customization can then be reapplied.

 24 9/8/2005

North Carolina Statewide Technical Architecture Application Domain

• Fully document customizations according to agency information technology
documentation policies and procedures.

• Develop a customization support strategy to mitigate the risk associated customizing
purchased or licensed software.

8.1.2. Purchase, transfer, or license business systems that provide clear
separation between the presentation logic, business logic, and data
access.

Rationale:

• Purchase or use commercial-off-the-shelf (COTS) packages that, at a minimum, are
developed utilizing a multi-tiered distributed architecture.

• The specialized, process-centric functional separation provided by services within a
Service-Oriented Architecture (SOA) is desirable though not required for purchased
or licensed applications.

• A multi-tiered distributed architecture provides flexibility in deployment.
• Communication between the tiers should occur only with the adjacent tier.
• In contrast to monolithic or client/server design models, a multi-tiered distributed

design encapsulates the application’s business logic and makes it available to other
applications and presentation technologies.

 25 9/8/2005

	Principles
	Business drives application design.
	Continuous change in business and technology define a need f
	Building a solution as a collection of reusable, loosely cou
	An agency’s architectural strategy defines the direction and
	End users determine application usability and functionality.
	The ease and completeness of testing is designed into the so
	Proactive application management is essential for continuous
	Enterprise solutions exist in heterogeneous environments tha
	Ensure the confidentiality, integrity, and availability of a
	Utilize widely adopted standards for the development of appl
	Ensure critical systems maintain a clear vendor dependency r
	Providing clear separation between functional layers enhance

	Application Design
	Practices
	Develop applications utilizing multi-tiered service-oriented
	Manage business logic outside of the development team.
	Incorporate the ability to capture and report management inf
	Develop applications to receive and process administrative c
	Utilize a standardized modeling language to align business r
	Publish open, standards-based interfaces for all reusable co
	Utilize existing and proven architecture, design, and implem
	Design components and services to be process-centric.
	Ensure accessibility by designing solutions that are availab
	Limit Web Services development to internal, non-public facin
	Document the application design.
	Design solutions that can be managed within a multi-tiered d
	Design public facing, web-based solutions to be browser inde

	Standards
	Comply with available application accessibility requirements
	Develop applications that can be managed by the Simple Netwo

	Application Structure
	Practices
	Provide clear separation between behavior, content, and pres
	Implement a discrete data access layer to isolate business l
	Design solutions that can be physically separated across mul
	Utilize standard distributed technologies for communication
	Develop applications and services independent of a particula

	Application Development
	Practices
	Utilize an enterprise framework in the development of applic
	Define specific roles for developers.
	Adopt and document a common set of coding standards.
	Limit, identify, isolate, and document development activitie
	Reuse existing components and services.
	Create and implement a comprehensive testing strategy as par

	Component Based Development
	Practices
	Document and publish information about reusable components.
	Provide a well-documented Application Programming Interface
	Construct components as reusable, fine-grained, functional a
	Design components as discrete elements that function indepen

	Service Oriented Architecture
	Practices
	Encapsulate business processes into well-defined, self-conta
	Provide interoperable access to published services.
	Access services through standardized, platform-neutral, self
	Separate the service interface from its implementation.
	Describe services using a standard format.
	Publicize and discover services using standard service regis
	Utilize standard protocols for exchanging messages and data

	Standards
	Promote web services interoperability by conforming to the W
	Transmit web services messages as Simple Object Access Proto
	Use the Web Services Description Language (WSDL) for describ
	Utilize the Universal, Description, Discovery and Integratio
	Conform to the eXtensible Markup Language (XML) specificatio
	Use the XML Schema specification for defining the structure,
	Invoke services over Hypertext Transfer Protocol (HTTP)

	Application Security
	Practices
	Ensure application security at all layers within a solution.
	Leverage industry standard secure coding practices in the de
	Limit risk by exposing only necessary, well-documented servi

	Purchased and Licensed Software
	Practices
	Limit and isolate customizations to purchased or licensed so
	Purchase, transfer, or license business systems that provide

